Index

6-OHDA, 89
α-synuclein, 12, 13, 54

A
Amantadine, 137
Animal models, 83
Anticholinergics, 136
Antigen presentation, 33
Apoptosis, 65
Apoptotic pathways, 67
Arthritis, 124
Autophagy, 16, 50, 51
Autosomal dominant, 8, 31
Autosomal recessive, 8, 31

B
B lymphocyte, 37
Braak staging, 12
Bradykinesia, 110
Brain iron accumulation, 122

C
Caffeine, 6
Caspases, 66
Catechol-O-methyl transferase inhibitors, 135
Cell types, 167
Cell-based therapies, 162
Cigarette smoking, 6
Clinical aspects, 45, 54
Clinical features, 3
Corticobasal syndrome, 117

D
Deep brain stimulation device, 150
Deep brain stimulation, 145
Dementia, 115
Depression, 124
Diagnosis, 110
Diagnostic criteria, 111
Differential diagnosis, 109, 148
Disease progression, 114
DJ-1, 96
Dopamine agonists, 133
Dopamine, 131
Dopaminergic, 3
Drug-induced parkinsonism, 117
Dysfunctional protein, 15
Dystonic tremor, 123

E
Embryonic stem cells, 165
Emerging treatments, 137
Environmental factors 38
ER-stress, 54
Essential tremor, 123
Etiology, 3, 6, 28
Extrinsic apoptotic pathway, 69

F
Familial, 9, 92, 119
Fragile X-associated tremor, 121
Fronto-temporal dementia, 121
G
Gain of function, 49
Gaucher disease, 48
GBA1 gene, 46
GBA1 mutation, 45, 48
Genetic causes, 119
Genetic models, 91, 92, 93
Genetics, 7
Globus pallidus internus, 153
Glucocerebrosidase, 46
GPi, 153, 154

H
Heavy metals, 7
Herbicides, 7, 90
HLA haplotypes, 34
HLA, 33, 35, 36
Human leukocyte antigen, 33
Huntington's disease, 120

I
Idiopathic, 110, 122
IFN-γ, 37
Immunogenetics, 27, 32
Induced pluripotent stem cells, 167
Inflammation, 37
Intrinsic apoptotic pathway, 68

L
Levodopa, 132
Lewy bodies, 115
Lewy body, 11
Loss of function, 49
LRRK2, 96
Lysosome, 50

M
Macroautophagy, 51
Metabolic pathway, 37, 131
Mitochondrial disorders, 122
Mitochondrial dysfunction, 14, 53
Monoamine oxidase B inhibitors, 135
Monogenic, 29
MPTP, 87
Multiple system atrophy, 115

N
Neurodegeneration, 122
Neurodegenerative causes, 114
Neuroimaging, 56
Neuroinflammation, 16
Neuropathology, 3, 8
Neurotoxic models, 87
NF-κB, 37
Nigrostriatal, 3
Non-human primates, 86
Non-mammalian species, 86
Non-motor features, 113
Non-neurological differential, 124
Normal-pressure hydrocephalus, 119

O
Obsessional slowness, 124
Outcome data, 152
Oxidative stress, 53

P
PARK-designated genes, 9
Parkinson's disease, 3, 27, 45, 65, 83, 109, 129, 145, 161
Pathogenic mechanisms, 48
Pathological mechanisms, 45
Patient selection, 146
Pedunculopontine nucleus, 155
Pesticides, 7, 90
Pharmacological treatment, 129
PINK1, 96
Preformed fibril models, 95
PRKN, 96
Progressive supranuclear palsy, 116
Psychogenic parkinsonism, 125

R
Rigidity, 113
Rodents, 85

S
Secondary causes, 117
Single nucleotide polymorphisms, 33
SNPs, 32, 33, 35, 36
Spinocerebellar ataxia, 121
Stem cell, 161
STN, 153, 154
Substantia nigra pars compacta, 10
Subthalamic nucleus, 151
Surgical procedure, 150

T
T lymphocyte, 37
Target selection, 145
Therapeutic implications, 73
Therapeutic prospects, 56
Toxins, 118
Transcription factors, 97
Transgenic models, 91
Treatment, 161
Tremor, 112, 123

U
Ubiquitin-proteasome, 15
UCH-L1, 96

V
Vascular parkinsonism, 118
Ventralis intermediate nucleus, 155
Viral vector-mediated models, 94

W
Wilson’s disease, 120

Doi: http://dx.doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ind
Dr. Tom Stoker BA (Hons) MB BChir MRCP(UK) is a neurologist, currently based at Addenbrooke’s Hospital, Cambridge, United Kingdom. After completing an intercalated degree in biological and biomedical sciences, he completed his medical degree at the University of Cambridge in 2012. Since then he has worked at a number of hospitals across the east of England, and he is currently working as a clinical research associate at the John van Geest Centre for Brain Repair at the University of Cambridge. His research involves the use of cell reprogramming techniques to study the mechanisms of, and test putative disease-modifying treatments for, Parkinson’s disease, with a particular interest in GBA1 mutation-associated Parkinson’s disease.

Dr. Julia Greenland MRes MBBS MRCP(UK) is a neurologist at Addenbrooke’s Hospital, Cambridge, United Kingdom. She graduated from Newcastle University in 2011 with a medical degree and an intercalated MRes degree, with a research focus on Parkinson’s disease. Following this, she has worked in a number of hospitals in the north-east and south of England, including the National Hospital for Neurology and Neurosurgery in London. She is currently working as a clinical research associate at the John van Geest Centre for Brain Repair, University of Cambridge. She is researching the involvement of the immune system in Parkinson’s disease, with a focus on targeting the peripheral immune system as a disease-modifying strategy.